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The infiuence of the nonlinear nature of a~symme~ic deformation of a semi- 

infinite circular cylindrical shell compressed by a uniform transverse stress 
resultant at the endface, on its stability relative to infinitesimal nonsymmetric 

perturbations satisfying the hinge-support conditions on the endface, is studied. 

An axisymmetric state of stress localized on a part of the length originates 
upon loading a circular cylindrical shell by a hoop load, upon heating it with 
a jump change in temperature on or between the supports, and under other ef- 

fects concentrated over some cross section. Such a state can turn out to be unstable 
in the sense that as the load (temperature, etc.) reaches some critical level, 

the shell goes over into an adjacent equilibrium state with the formation of 
waves in the circumferential direction. It is known that an adjacent (convex) 

state, just as the initial (subcritical) state, is of a quite definite local nature 
(in the axial direction). 

In the first theoretical investigations on the problem of stability of cylindri- 
cal shells under the conditions of a local axisymmetric state of stress, a class- 

ica1 formulation of this problem was used which does not take account of chan- 
ges in the shape of the shell caused by subcritical strain El- 31. The question 

of the need for a more general formulation of problems of the class considered 
was raised in [4], where the stability equations of a cylindrical shell heated 

between cold diaphragms were written taking account of subcritical curvature 
of its generator. The change in longitudinal curvature of the shell up to the 
time of buckling was determined by a linear formula. Later, solutions of a 

whole series of problems [S - la], which showed high sensitivity of the critical 
level of the external effects to a change in shell shape prior to bucking, were 

obtained in such a formulation. 
Thus, values of the parameter z in the formula for the critical temperature 

drop 6 = “~2 ( Al (pz = fa / R 7/3 (i-v2), h and 19 are the shell thickness 
and radius, v and a are the coefficients of transverse and temperature expan- 
sion), obtained taking account of subcritical bending in the stability problem 

of a cylindrical shell connected to a stiff cold diaphragm at an endface under 

uniform heating, are 40.5 [S], 39 [S], 34.6 n] for different kinds of hinge sup- 
port. The solution of the same problems in a classical formulation results in 
the values 8.74 [53. 8.56 [S] , 8.85 [7], For a step change in the temperature 
along the generator, the values found for 7 were 30.2 [S], 32.5 fl], 33.9 [S], 
34.6 [9], 29.8 LlO] with subcritical bending taken into account, and 7.6 [3], 

7.4 [5], 7.82 [7], 7.28 [8] without such bending. The effect caused by the 
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subcritical curvature of the generator becomes fundamental in each of these 
problems and results in a 3.5 - 4. S-fold change in the critical value of the 
parameter z . 

Subcritical shell bending causes rotation of its generator at the connection 

with the diaphragm through an angle whose absolute value is rp. Therefore, 
for not too thin shells this angle becomes quite large prior to the time of buck- 
ling. Relative to such shells, doubt arises as to the admissibility of linearizing 

the expressions governing the subcritical bending strain components. In this 
connection, one of the characteristic problems of local cylindrical shell stabi- 

lity is considered below, where nonlinear equations describing the strain with‘ 
arbitrary angles of rotation are used to determine the subcritical state. Some 

reasoning about the expediency of a nonlinear determination of the subcritical 

state has been expressed earlier in [ll]. 

1. Let a semi-infinite circular cylindrical shell be loaded at the free endface by a 

uniform transverse stress resultant Q (Fig.1). Let M,, N,, am, x, (a = i, 2) , respectively, 
denote the specific bending moments, normal stress resultants, shear and bending strain 

components, where the subscript 1 will refer to the direction along the generator. and the 
subscript 2 to the circumferential direction. From the relationship 

$. 
where W’ is the deflection and 6 is the 

DL 2 dwo~ds=.-sin% %‘=wO/R 

angle of rotation of the generator, follows 
the compatibility condition of the axisym- 

metric strains 
Fig. 1 Rde,” I ds + sin0 = 0 

Here s is a coordinate measured along the strained generator. The statistical and geo- 
metric characteristics of the axisymmetric subcritical state will be marked with a zero 

superscript. n conformity with their definition, we shall use the following exact expres- 
sions for the bending strain components 

Xl ‘=dv/ds, x,“=(cos6-1)/R 

Because of the absence of axial loads, the equilibrium equations of a shell element are 

N,’ = -Q,“sin6, N,” = Ijd Qr” / ds, dM1” I ds - Ql”cos6 = 0 

where (91” is the radial stress resultant. By using the elasticity relationship 

Es0 = A (N,” - vNrO), M,” = D (x1” + vxz”) (A = 1 / Eh, D = Eh3 I22 (1 - v2)) 

we express the quantities sZO and M,” in terms of the functions Qr” and 6. The com- 
patibility condition and the last of the equilibrium equations yield a nonlinear system 
for these functions. Using the notation 

let us write the nonlinear system as 

V” + pv (71 sin S)’ + 2 sin6 = 0, W‘ + pv (costi)’ - 2q cos6 = 0 

The primes here denote differentiation with respect to z. On the loaded edge there 
should be compliance with the conditions 
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Qr” = Q, Ml” = 0 

which become 

?l = pq, 6’ + I”v (cos8 - 1) = 0 (z = O), p = 2AQ / p3 

where q is a dimensionless loading parameter. Moreover, let us require boundedness of 

the functions ?I and 6 at infinity. For thin shells PV 4 1, which affords the possibility 
of formulating the boundary value problem posed in the slmpli~ed form 

11” + 2 sin6 = 0, it” - 2 ?J COS6 = 0 (0 < 5 G 00) 

q=pq, 6’== 0 (5=0), vj==6=0 (x=4 (1.1) 

Introducing the new variables X 
sin 6 

X=7, t = 
c 

cos8dx 
?I 

we obtain in place of (1.1) 

$2) + 2x - pax (tp@fX + ~(l)~{l)) = 0, $2’ - 2g1 =i 0 (0 < t < co) 

cp = q, p = 0 (t = O), ip =x =o (t = 00) (1.2, 

The superscript in parentheses here shows the order of the derivarive with respect to t. 
The cubic nonlinearily of the dependent variables is isolated explicitly in such a writing. 
Eliminating the function 9 from (1.2). we arrive at the following boundary value prob- 

lem for the function X: 
X(4) +4x - paX ($43 -F_ pp) = 0 (OGtdcQ) (1.3) 

X0) = 29, $1) -_ 0 (t zxc O), $2) =x = 0 (t = co) (1.4) 
Following [ 121, let us seek the solution of the problem as 

X L= a& + a_& + pS (a&l3 + &“S: -/- %&15~~ + a&L3) -j- . . . (1.5) 

where $ and g, are linearly independent solutions of the equation 5’“) + 45 = 0, 
bounded at infinity, which have the form 

f, ($1 = exp (ha% h,=--li_i, hs=--1----, I= m 

The coefficients as, ~4, a5, ag, . . . are determined successively from (1.3) in terms of 
the constants u1 and +. In particular 

I-3i 1 
a5 = - 20 ala%“, a6 = -gg a$ 

The boundary conditions at t = 0 yield a nonlinear algebraic system to determine 
these constants 

Later we limit ourselves to the finite number of terms of the series (1.5) written down, 
We determine the constants nl and a2 approximately from the equations 
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where cg is a solution of the linear system 

G% + ha% = 2% h,c, + &cz = 6 

For such a definition of the constants ai and a, the approximate solution obtained cor- 
responds, in accuracy, to the first two members of the expansion of the solution of the 

boundary value problem (1.3), (1.4) in the small parameter p8. In this same approxima- 
tion we have 

t=&-~)&, x0 = xc (5) = Cl51 (I) + c252 (t) 

0 

so that the variable t is a known function of 2. After extracting real and imaginary 
parts of the introduced complex expressions, we obtain the functions needed later, which 
determine the circumferential stress resultant in the shell and the curvature of the gene- 

rator of the subcritical state 

q(l) = - qe-’ [(a + p) COs i! - (a - p) sin t + pQ-st X 
(27 sin 3t + 62 cos t + 34 sin t)] (a = i - 13~2 / 2) 

x(l) = qeet [(a - p) co9 t + (a + p) sin t + p2e-2t X 
(3 cos 3t - 14 cos t $2 sin t)] (3 = 1 - 47~2 / 2) 

p2 - i.@qa / 40, t = z - 5p‘J [3 - em* (2 + cos 2x + sin 2x)] 

By formally discarding terms with the factor p2 we obtain the solution of the linearized 

problem 
‘PO’ = - 2qe-” cos 5, ‘po = qe-” (cos x - sin 5) 

x0’ = 2qewX sin 2, x0 = - qeKX (cos x + sin 5) 

2. Taking account of the local nature of the buckling, the stability equations ofthe 
deformed cylindrical shell can be written in the form proposed by shallow shell theory 
[13]. Introducing the function v governing the increment of the normal stress resultants 

as 
N2 = - BCPv, N,= - B’J22u (B = CEh) 

and the function w governing the increment of the bending strains as 

x, = - VIZW, X2 = - ‘;J$w 

we arrive at the following description of the stability equations : 

Cv”v% + (R-l + ~2’) ‘JI”W + x~=‘G~~w = 0 

Cv”32w - (R-l + x2”) vl”v - Y.,~T~~‘Jv - B-1 (NI”v,‘w + N20~2%4 = 0 

Here r(s) is the distance between the axis and a point on the strained shell surface, 
and Y is an angular coordinate. Using the expressions 

going over to the variable z and assuming (n is an integer) 
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v= 2J vn (4 exp (W, w = 2 wn (4 exp Py! 
n n 

we obtain a system of two ordinary differential equations for each value of n 

Pns.S, + 2 co9 I~w,” - 2p-lft’ (r”w, + p sin flw,‘) = 0 

P,aw, - 2 co9 #v,’ + 2p-16’ (r2v, + p sin Sv,‘) + 

2q sin 6w,” + 2p?j’ (Tzwn + p sin ItuT,n’) = 0 

Introducing the functions cp, x instead of the functions 9,6 for the subcritical state, and 
taking account of the approximate nature of the solution of the nonlinear problem, we 

arrive at the final stability equations 

P,“e, + 2 (1 - p2xo”) Wn” - 2x(l) (TZW, + pL:xow,‘) = 0 

Pn” wn - 2 (1 - p2xo2) D, U + 2x(l) (r*v, + pzxov 11 ‘) + 

2y2qIox(lw,” + 2@) Jff - Il’xo2 (rZw* + p2xown’),- 0 

Let us be given the hinge-support boundary conditions for the perturbed state on the edge 
z = 0 (z+ is the circumferential displacement) 

N, = c+ = w = M, = 0 

The solution should vanish at infinity. 

Therefore, we have a homogeneous boundary value problem dependent on the load 
parameter q. The least eigenvalue of this parameter defines the critical value of the 
external stress resultant 3. We hence call it the critical value. 

Let us note that the solution of the formulated eigenvalue problem simultaneously 

yields the solution of the stability problem for a heated cylindrical she’ll hinge-connec- 
ted to a cold stiff diaphragm at an endface. Such a shell buckles because of circumfer- 
ential stresses caused by the limitation of the temperature strains in the reference sec- 

tion. The critical value of the parameter r introduced above agrees with the critical 

value of the parameter q. 

3. The problem of determining the critical value of the load parameter 9 wassolved 
in finite differences by the matrix factorization method p4]. The computations were 

first carried out for p = 0, which corresponds to lineariza- 

tion of the equations of the subcritical state of the shell. 
A curve of the dependence of the first eigenvalue ql on 

the parameter y, associated with the number of circum- 
ferential waves, is presented in Fig. 2 for this case. The 
curve has a minimum point for which y = Y* Z= 4.9, % = 
9* Z 32.7.The length of the interval and the integration 

step were varied. Results have been obtained for an inter- 
val length 1.5n and a step n / 120, which assured calcula- 
tion of the first eigenvalue PI to 0.5% accuracy. 

Therefore, in determining the subcritical state by linear 
theory the critical load is calculated by the formula 

Fig. 2 Q* = qrp3Eh / 2 
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where 9* = const r 32.7. Taking account of the nonlinearity of the subcritical state 
results in the dependence of q* on the parameter p. Numerical values of q* for a num- 

ber of values of p are given below. 

P 0.005 0.010 0.015 0.020 0.025 0.026 
r* 4.65 4.6 

0.027 
4.7 4.6 4.4 4.45 

* 4.5 

:* 
32.5 31.9 30.9 30.1 29.9 30.1 

0.162 
33.7 

0.315 0.451 0.572 0.635 0.710 3.740 

Values of the parameter y and absolute values of the subcritical angle of rotation 
6 at the point z = 0 (8* = f 6 (0) 1 for q = q*) corresponding to q+ are indicated here. 

For the linear subcritical state 6* = pq*. As we see, taking account of the nonline~l~ 

does not affect the magnitude of the critical load substantially. However, it permits dis- 
closure of that value of I.& which Limits the domain of existence of the critical load. 

The critical load vanished in the problem under consideration between the values 

P = 0.027 and p = 0.0275. Hence, the behavior of the roots of the characteristic deter- 

minant d (g) was investigated especially in the interval 0.027 < p < 0.0275 for ra = 
20. The results of this investigation are shown in Fig. 3. The solid lines refer to values 

of IL which differ by 0.0001, where the lowest curve corresponds to the value 0.0270 
and the highest to 0.0275. The picture shown indicates that as p. grows, the roots of the 
determinant (the first and second eigenvalues of the problem) approach each other until 
they merge for p = &to E 0.0273. For p > ~0 the determinant has no roots. As p dimi- 
nishes-from pa the spacing between the roots increases rapidly, as the dashed curve cor- 

responding to the value p = 0.025 indicates. 

Fig. 3 Fig. 4 

A graphic representation of the difference between results corresponding to a formu- 
lation with the nonlinearity of the subcritical state taken into account (when q* = q* 

(p)) , and a formulation with its linearization (q* = q* (0)) is given in Fig. 4. The ratio 

k = Q* (p) / q* (0) is represented hereasa functionofy-l = 13 (1 - +)I” (R / IL)“~ by 

curve 1. The semi-infinite line k E 1 corresponds to the solution with linearization 
of the subcritical state, A still more simplified formulation, when the subcritical cur- 

vature of the generator is not generally taken into account, yields g* = 8.5 for y* = 
1.4, which agrees with the result in [I]. Curve 2 in Fig. 4 determines the value of 6* 
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corresponding to the nonlinear problem. 
It follows from the results presented that the solution corresponding to the linear sub- 

critical state is asymptotically exact as CL -, 0, but is only suitable for very thin shells 
(R / h 2 800 for v = 0.3). 
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